Loading [MathJax]/jax/output/SVG/config.js
Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2017, Volume 47, Number 4, Pages 319–326 (Mi qe16590)  

This article is cited in 18 scientific papers (total in 18 papers)

Interaction of laser radiation with matter. Laser plasma

Experimental capabilities of the GARPUN MTW Ti : sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets

V. D. Zvorykinab, S. A. Goncharovb, A. A. Ionina, D. V. Mokrousovaac, S. V. Ryabchukb, L. V. Selezneva, E. S. Sunchugashevaa, N. N. Ustinovskiia, A. V. Shutova

a P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow
b Moscow Engineering Physics Institute (National Nuclear Research University)
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: This paper describes the first experiments carried out on the GARPUN MTW Ti : sapphire – KrF hybrid laser facility and aimed at gaining insight into the interaction of subpicosecond UV pulses with solid and structured low-density carbon nanotube targets at peak intensities of ~1016 W cm-2 in a focal spot ~70 μm in size. Using X-ray absorbers, the plasma electron temperature has been measured to be ~850 eV. In our experiments, we used an optimal configuration: direct double-pass ultrashort-pulse (USP) amplification in KrF amplifier stages, with multiple laser beam filamentation suppression in a xenon-filled cell. The highest energy on a target was 0.25 J at a USP contrast relative to amplified spontaneous emission of ~3 × 1010 for intensities and ~3 × 105 for fluences. Owing to two-photon resonance in the UV spectral region, the use of xenon, with a negative nonlinear refractive index, allowed us to make the cross-sectional fluence distribution more uniform and reduce the beam divergence to 0.14 mrad (at the 10% intensity level). Reducing the USP duration via negatively chirped pulse amplification and filamentation suppression and reducing the focal spot size on a target by using parabolic short-focus optics are expected to ensure an increase in the intensity incident on the target by one to two orders of magnitude.
Keywords: amplification of subpicosecond terawatt pulses in KrF amplifiers, interaction of intense UV pulses with targets.
Received: 24.01.2017
Revised: 22.02.2017
English version:
Quantum Electronics, 2017, Volume 47, Issue 4, Pages 319–326
DOI: https://doi.org/10.1070/QEL16290
Bibliographic databases:
Document Type: Article
Language: Russian
Supplementary materials:
pic_5.pdf (2.6 Mb)
pic_9.pdf (597.3 Kb)


Citation: V. D. Zvorykin, S. A. Goncharov, A. A. Ionin, D. V. Mokrousova, S. V. Ryabchuk, L. V. Seleznev, E. S. Sunchugasheva, N. N. Ustinovskii, A. V. Shutov, “Experimental capabilities of the GARPUN MTW Ti : sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets”, Kvantovaya Elektronika, 47:4 (2017), 319–326 [Quantum Electron., 47:4 (2017), 319–326]
Linking options:
  • https://www.mathnet.ru/eng/qe16590
  • https://www.mathnet.ru/eng/qe/v47/i4/p319
  • This publication is cited in the following 18 articles:
    1. I. V. Aleksandrova, A. A. Akunets, E. R. Koresheva, A. I. Nikitenko, V. D. Zvorykin, Bull. Lebedev Physics Institute, 51:suppl. 6 (2024), S472–S488  mathnet  crossref
    2. Bull. Lebedev Physics Institute, 51:suppl. 4 (2024), S263–S273  mathnet  crossref
    3. Bull. Lebedev Physics Institute, 50:suppl. 5 (2023), S560–S571  mathnet  crossref
    4. Anna V. Bogatskaya, Ekaterina A. Volkova, Alexander M. Popov, Photonics, 10:5 (2023), 585  crossref
    5. Anna V. Bogatskaya, Ekaterina A. Volkova, Alexander M. Popov, Photonics, 10:2 (2023), 113  crossref
    6. A V Bogatskaya, E A Volkova, A M Popov, Plasma Sources Sci. Technol., 31:9 (2022), 095009  crossref
    7. Ji Zhang, Leijian Wang, Xiaohua Zhang, Juan Du, Sixth International Symposium on Laser Interaction with Matter, 2022, 55  crossref
    8. A. V. Bogatskaya, E. A. Volkova, A. M. Popov, Phys. Rev. E, 104:2 (2021), 025202  crossref  isi  scopus
    9. A. V. Bogatskaya, E. A. Volkova, A. M. Popov, Plasma Sources Sci. Technol., 30:8 (2021), 085001  crossref  isi
    10. A. V. Bogatskaya, N. E. Gnezdovskaia, A. M. Popov, Phys. Rev. E, 102:4 (2020), 043202  crossref  isi  scopus
    11. A. V. Bogatskaya, N. E. Gnezdovskaia, E. A. Volkova, A. M. Popov, Plasma Sources Sci. Technol., 29:10 (2020), 105016  crossref  isi  scopus
    12. V. D. Zvorykin, I. G. Lebo, A. V. Shutov, N. N. Ustinovskii, Matter Radiat. Extrem., 5:3 (2020), 035401  crossref  isi  scopus
    13. V. D. Zvorykin, A. V. Shutov, N. N. Ustinovskii, Matter Radiat. Extrem., 5:4 (2020), 045401  crossref  isi  scopus
    14. R. H. Lehmberg, M. F. Wolford, J. L. Weaver, D. Kehne, S. P. Obenschain, D. Eimerl, J. P. Palastro, Phys. Rev. A, 102:6 (2020), 063530  crossref  isi  scopus
    15. V. Zvorykin, A. Ionin, D. Mokrousova, L. Seleznev, I. Smetanin, E. Sunchugasheva, N. Ustinovskii, A. Shutov, J. Opt. Soc. Am. B-Opt. Phys., 36:10 (2019), G25–G32  crossref  isi  scopus
    16. V. D. Zvorykin, I. V. Smetanin, N. N. Ustinovskii, A. V. Shutov, Appl. Phys. B-Lasers Opt., 124:5 (2018), 80  crossref  isi
    17. A. V. Bogatskaya, A. M. Popov, Laser Phys. Lett., 15:10 (2018), 105301  crossref  isi
    18. Weaver J., Lehmberg R., Obenschain S., Kehne D., Wolford M., Appl. Optics, 56:31 (2017), 8618–8631  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :99
    References:55
    First page:9
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025