Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2016, Volume 46, Number 11, Pages 1055–1060 (Mi qe16499)  

This article is cited in 2 scientific papers (total in 2 papers)

Biophotonics

Effects of haemodilution on the optical properties of blood during coagulation studied by optical coherence tomography

B. Liua, Y. Liua, H. Weia, X. Yanga, G. Wub, Z. Guoa, H. Yangc, Y. Hed, S. Xiec

a MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, China
b Department of Surgery, the First Affiliated Hospital, Sun Yat-Sen University, China
c Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education of China, Fujian Normal University, China
d Graduate School at Shenzhen, Tsinghua University, China
Full-text PDF (516 kB) Citations (2)
References:
Abstract: We report an investigation of the effects of blood dilution with hypertonic (7.5%) and normal (0.9%) saline on its optical properties during coagulation in vitro using optical coherence tomography. The light penetration depth and attenuation coefficient are obtained from the dependences of reflectance on the depth. Normal whole blood has served as the control group. The average coagulation time is equal to 420 ± 16, 418 ± 16 and 358 ± 14 s with blood volume replacement of 2%, 11%, and 20% by 0.9% normal saline, respectively. With 2%, 11% and 20% blood volume replacement with 7.5% hypertonic saline, the average coagulation time is 422 ± 17, 1160 ± 45 and 1730 ± 69 s, respectively. For normal whole blood, the average coagulation time amounts to 425 ± 19 s. it is shown that dilution with normal saline has a procoagulant effect when it replaces 20% of blood volume, and hypertonic saline has an anticoagulant effect if it replaces 11% or more of blood volume. It is concluded that optical coherence tomography is a potential technique to quantify and monitor the liquid – gel transition during the coagulation process of blood diluted by normal and hypertonic saline.
Keywords: optical coherence tomography, blood, coagulation, haemodilution, optical properties.
Funding agency Grant number
Национальный фонд естественных наук Китая 60778047
61335011
61275187
81071790
Специализированный научный фонд поддержки докторских программ высшего образования Китая 20114407110001
200805740003
Фонд естественных наук провинции Гуандун 06025080
9251063101000009
Программа технических изобретений провинции Гуандун 2013KJCX052
Научно-технологический проект провинции Гуандун 2012A080203008
Программа ведущей лаборатории оптоэлектронной науки и технологии для медицины (Нормальный университет Фуцзянь), Министерство образования Китая JYG1202
Received: 22.07.2016
Revised: 30.09.2016
English version:
Quantum Electronics, 2016, Volume 46, Issue 11, Pages 1055–1060
DOI: https://doi.org/10.1070/QEL16185
Bibliographic databases:
Document Type: Article
Language: Russian


Citation: B. Liu, Y. Liu, H. Wei, X. Yang, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, “Effects of haemodilution on the optical properties of blood during coagulation studied by optical coherence tomography”, Kvantovaya Elektronika, 46:11 (2016), 1055–1060 [Quantum Electron., 46:11 (2016), 1055–1060]
Linking options:
  • https://www.mathnet.ru/eng/qe16499
  • https://www.mathnet.ru/eng/qe/v46/i11/p1055
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024