Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2014, Volume 44, Number 2, Pages 130–134 (Mi qe15876)  

This article is cited in 8 scientific papers (total in 8 papers)

Nonlinear optical phenomena

Approximate solutions to a nonintegrable problem of propagation of elliptically polarised waves in an isotropic gyrotropic nonlinear medium, and periodic analogues of multisoliton complexes

V. A. Makarovab, V. M. Petnikovaab, N. N. Potravkinab, V. V. Shuvalovab

a International Laser Center of Moscow State University
b Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: Using the linearization method, we obtain approximate solutions to a one-dimensional nonintegrable problem of propagation of elliptically polarised light waves in an isotropic gyrotropic medium with local and nonlocal components of the Kerr nonlinearity and group-velocity dispersion. The consistent evolution of two orthogonal circularly polarised components of the field is described analytically in the case when their phases vary linearly during propagation. The conditions are determined for the excitation of waves with a regular and 'chaotic' change in the polarisation state. The character of the corresponding nonlinear solutions, i.e., periodic analogues of multisoliton complexes, is analysed.
Keywords: cubic nonlinearity, spatial and frequency dispersion, linear and nonlinear gyrotropy, nonlinear Schrödinger equation, elliptical polarisation, polarisation chaos, periodic analogue of a multisoliton complex.
Received: 13.11.2013
Revised: 31.12.2013
English version:
Quantum Electronics, 2014, Volume 44, Issue 2, Pages 130–134
DOI: https://doi.org/10.1070/QE2014v044n02ABEH015344
Bibliographic databases:
Document Type: Article
PACS: 42.65.-k, 42.25.Ja, 42.65.Sf, 42.65.Tg, 05.45-a
Language: Russian


Citation: V. A. Makarov, V. M. Petnikova, N. N. Potravkin, V. V. Shuvalov, “Approximate solutions to a nonintegrable problem of propagation of elliptically polarised waves in an isotropic gyrotropic nonlinear medium, and periodic analogues of multisoliton complexes”, Kvantovaya Elektronika, 44:2 (2014), 130–134 [Quantum Electron., 44:2 (2014), 130–134]
Linking options:
  • https://www.mathnet.ru/eng/qe15876
  • https://www.mathnet.ru/eng/qe/v44/i2/p130
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024