Abstract:
A description is given of a detailed nonsteady-state multiwave kinetic model of a laser, based on xenon atom transitions with λλ = 1.73, 7.03, 2.65, 2.63, 3.37, and 3.51 μμm in an He – Ar – Xe mixture pumped by a hard ioniser. The proposed kinetic model is tested against the results of experiments on electron-beam pumping of an Xe laser containing pure xenon, as well as binary and ternary mixtures. Numerical modelling is used to identify the main mechanisms pumping the upper active levels: three-particle recombination of atomic Xe++ ions (He – Xe mixture), dissociative recombination of molecular Xe+2+2 ions (pure Xe), dissociative recombination of molecular ArXe++ ions and electron excitation from the 6s′ xenon atom states in an (He) – Ar – Xe mixture. It is shown that the contribution of each of the mechanisms to pumping of the upper active level is determined by the composition and pressure of the mixture.
Citation:
A. V. Karelin, O. V. Simakova, “Kinetics of the active medium of a multiwave IR xenon laser in hard-ioniser-pumped mixtures with He and Ar. I. Electron-beam pumping”, Kvantovaya Elektronika, 28:2 (1999), 121–128 [Quantum Electron., 29:8 (1999), 678–686]
\Bibitem{KarSim99}
\by A.~V.~Karelin, O.~V.~Simakova
\paper Kinetics of the active medium of a multiwave IR xenon laser in hard-ioniser-pumped mixtures with He and Ar. I. Electron-beam pumping
\jour Kvantovaya Elektronika
\yr 1999
\vol 28
\issue 2
\pages 121--128
\mathnet{http://mi.mathnet.ru/qe1552}
\transl
\jour Quantum Electron.
\yr 1999
\vol 29
\issue 8
\pages 678--686
\crossref{https://doi.org/10.1070/QE1999v029n08ABEH001552}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083339000004}
Linking options:
https://www.mathnet.ru/eng/qe1552
https://www.mathnet.ru/eng/qe/v28/i2/p121
This publication is cited in the following 5 articles:
Adrian Love, Springer Theses, Hollow Core Optical Fibre Based Gas Discharge Laser Systems, 2018, 29
I. I. Andryushin, V. I. Vladimirov, L. V. Deputatova, V. A. Zherebtsov, V. I. Meshakin, P. I. Prudnikov, V. A. Rykov, High Temperature, 51:6 (2013), 733–741
M Gnybida, D Uhrlandt, D Loffhagen, J. Phys. D: Appl. Phys., 45:19 (2012), 195203
G M Petrov, J L Giuliani, J P Apruzese, A Dasgupta, Tz Petrova, K Bartschat, D Rose, J. Phys. D: Appl. Phys., 40:15 (2007), 4532
D. N. Babichev, A. V. Karelin, O. V. Simakova, H. Tomizawa, Quantum Electron., 31:3 (2001), 209–217