|
Lasers
Study of a plate-electrode XeCl laser with a pulse repetition rate up to 5 kHz
D. D. Voevodin, A. V. Vysotskii, B. V. Lazhintsev, A. V. Pisetskaya Federal State Unitary Enterprise "Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics", Sarov
Abstract:
The results of the study of a repetitively pulsed XeCl laser with a high rate of pulse repetition and the electrode assembly based on a multi-section discharge gap with inductance-capacitance stabilisation of the discharge are presented. The multi-section discharge gap is formed by 25 pairs of anode — cathode plates. The discharge formed in the interelectrode gap had the dimensions 250 × 12 × 2 mm. The studies were performed using the HCl — Xe — Ne laser mixture at the total pressure up to 3.5 atm. The limit value of the radiation pulse repetition rate was equal to 5 kHz. The meansquare deviation of the pulse energy increased from 0.8 % to 1.6 % in the range of repetition rates from 1 to 4.5 kHz and did not exceed 2.4 % at the frequency 5 kHz. The maximal energy of the laser pulse and the efficiency coefficient were equal to 7.9 mJ and 1.6 %, respectively. The maximal power of laser radiation (31 W) was obtained at the repetition rate 5 kHz. A new technique of measuring the gas flow velocity in the interelectrode gap is proposed. The velocity of gas circulation at the maximal pressure of the mixture did not exceed 18 m s-1. Optical inhomogeneities were observed, caused by a high concentration of electrons in the discharge plasma, by the acoustic wave, arising in the discharge gap, and by the heating of the gas in the discharge.
Keywords:
electric-discharge XeCl laser, multi-plate electrodes, inductance-capacitance stabilisation, pulse repetition rate, radiation energy stability, shadow technique, optical inhomogeneities.
Received: 29.05.2012
Citation:
D. D. Voevodin, A. V. Vysotskii, B. V. Lazhintsev, A. V. Pisetskaya, “Study of a plate-electrode XeCl laser with a pulse repetition rate up to 5 kHz”, Kvantovaya Elektronika, 42:11 (2012), 980–984 [Quantum Electron., 42:11 (2012), 980–984]
Linking options:
https://www.mathnet.ru/eng/qe14926 https://www.mathnet.ru/eng/qe/v42/i11/p980
|
Statistics & downloads: |
Abstract page: | 224 | Full-text PDF : | 107 | References: | 47 | First page: | 2 |
|