Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2011, Volume 41, Number 2, Pages 185–188 (Mi qe14461)  

Imaging

On focusing of laser radiation with an axicon

A. A. Malyutin

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow
References:
Abstract: The influence of axially symmetric perturbations of the intensity and phase of the laser beam on its focusing by means of an axicon is considered. It is shown that such perturbations give rise to variations in the radiation energy density on the axicon axis with two periods, Λ/γ and Λ2/λ, where λ is the period of perturbation of the laser beam intensity, and γ is the angle of convergence of the focused beam.
Received: 22.10.2010
Revised: 09.12.2010
English version:
Quantum Electronics, 2011, Volume 41, Issue 2, Pages 185–188
DOI: https://doi.org/10.1070/QE2011v041n02ABEH014461
Bibliographic databases:
Document Type: Article
PACS: 42.15.Dp, 42.15.Fr, 42.79.Bh
Language: Russian


Citation: A. A. Malyutin, “On focusing of laser radiation with an axicon”, Kvantovaya Elektronika, 41:2 (2011), 185–188 [Quantum Electron., 41:2 (2011), 185–188]
Linking options:
  • https://www.mathnet.ru/eng/qe14461
  • https://www.mathnet.ru/eng/qe/v41/i2/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :138
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024