Loading [MathJax]/jax/output/SVG/config.js
Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1999, Volume 26, Number 1, Pages 59–64 (Mi qe1412)  

This article is cited in 108 scientific papers (total in 108 papers)

Laser applications and other topics in quantum electronics

Compensation of thermally induced polarisation distortions in Faraday isolators

E. A. Khazanov

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod
Abstract: Two new Faraday isolator designs are proposed. They make it possible to compensate partly for the depolarisation of radiation which occurs in magneto-optical elements because of the photoelastic effect caused by heating associated with the absorption of laser radiation. Analytic and numerical comparisons of the new and traditional designs demonstrate a significant (by orders of magnitude) increase in the isolation ratio of the new isolators. The results obtained indicate that it should be possible to construct a Faraday isolator with the isolation ratio of 30 dB for laser radiation with an average power of several kilowatts.
Received: 08.09.1998
English version:
Quantum Electronics, 1999, Volume 29, Issue 1, Pages 59–64
DOI: https://doi.org/10.1070/QE1999v029n01ABEH001412
Bibliographic databases:
Document Type: Article
PACS: 78.20.Ls, 85.70.Sq
Language: Russian


Citation: E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators”, Kvantovaya Elektronika, 26:1 (1999), 59–64 [Quantum Electron., 29:1 (1999), 59–64]
Linking options:
  • https://www.mathnet.ru/eng/qe1412
  • https://www.mathnet.ru/eng/qe/v26/i1/p59
  • This publication is cited in the following 108 articles:
    1. Dominika Jochcová, Ondřej Slezák, Ivan Richter, Martin Smrž, Tomáš Mocek, J. Opt., 27:1 (2025), 015601  crossref
    2. František Batysta, Jakub Novák, Emily Erdman, Emily Sistrunk, Anthony Vella, Thomas Galvin, Michael Torrance, Joseph Mambourg, David Scerbak, Conor Byrne, Bedřich Rus, Andy Bayramian, Kathleen Schaffers, Chuck Heinbockel, Paul Rosso, David Gibson, Katherine Velas, Thomas Spinka, Opt. Express, 33:4 (2025), 7372  crossref
    3. E.A. Mironov, O.V. Palashov, A.D. Bulanov, S.S. Balabanov, Acta Materialia, 2025, 120920  crossref
    4. Rui Qiao, Zhaohui Hu, Jinji Sun, Journal of Magnetism and Magnetic Materials, 2025, 173039  crossref
    5. Ilya Snetkov, Appl. Phys. B, 130:5 (2024)  crossref
    6. Johann Gabriel Meyer, Andrea Zablah, Kristaps Kapzems, Nazar Kovalenko, Oleg Pronin, Opt. Express, 32:17 (2024), 29227  crossref
    7. Aleksey V. Starobor, Oleg Palashov, Lixuan Zhang, Jiang Li, Shibin Jiang, Ingmar Hartl, Jun Liu, Advanced Lasers, High-Power Lasers, and Applications XIV, 2023, 3  crossref
    8. E. A. Mironov, I. L. Snetkov, A. V. Starobor, O. V. Palashov, Applied Physics Letters, 122:10 (2023)  crossref
    9. Ondřej Slezák, David Vojna, Jan Pilař, Martin Divoký, Ondřej Denk, Martin Hanuš, Petr Navrátil, Martin Smrž, Antonio Lucianetti, Tomáš Mocek, Opt. Lett., 48:13 (2023), 3471  crossref
    10. David Vojna, Ondřej Slezák, Jan Pilař, Martin Divoký, Ondřej Denk, Martin Hanuš, Petr Navrátil, Martin Smrž, Antonio Lucianetti, Tomáš Mocek, Laser Congress 2023 (ASSL, LAC), 2023, ATh1A.2  crossref
    11. František Batysta, Emily Sistrunk, Anthony Vella, Emily Erdman, Jakub Novák, Mike Torrance, Joseph Mambourg, David Scerbak, Conor Byrne, Bedřich Rus, Thomas M. Spinka, CLEO 2023, 2023, SM1D.1  crossref
    12. Evgeniy A. Mironov, Oleg V. Palashov, J. Opt. Soc. Am. B, 39:8 (2022), 2037  crossref
    13. Ilya Snetkov, Jiang Li, Magnetochemistry, 8:12 (2022), 168  crossref
    14. Xianhui Xin, Yuankai Hao, Lei Liu, Junai Lv, Jian Zhang, Xiuwei Fu, Zhitai Jia, Xutang Tao, Crystal Growth & Design, 22:9 (2022), 5535  crossref
    15. Snetkov I., Starobor A., Palashov O., Balabanov S., Permin D., Rostokina E., Opt. Mater., 120 (2021), 111466  crossref  isi
    16. Mironov E.A., IEEE J. Quantum Electron., 57:5 (2021), 6100407  crossref  isi
    17. Starobor V A., Kuznetsov I.I., Palashov V O., Pestov A.E., Chkhalo I N., IEEE J. Quantum Electron., 57:6 (2021)  crossref  isi
    18. Snetkov I.L., IEEE J. Quantum Electron., 57:5 (2021)  crossref  isi
    19. Snetkov I. Yakovlev A. Starobor A. Balabanov S. Permin D. Rostokina E. Palashov O., Opt. Lett., 46:15 (2021), 3592–3595  crossref  isi
    20. Palashov V O. Starobor V A. Perevezentsev E.A. Snetkov I.L. Mironov E.A. Yakovlev I A. Balabanov S.S. Permin D.A. Belyaev V A., Materials, 14:14 (2021), 3944  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :163
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025