Loading [MathJax]/jax/output/SVG/config.js
Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2008, Volume 38, Number 6, Pages 597–605 (Mi qe13891)  

This article is cited in 47 scientific papers (total in 47 papers)

Special issue devoted to application of laser technologies in biophotonics and biomedical studies

Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy

E. Borisovaa, P. Troyanovab, P. Pavlovac, L. Avramova

a Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b National Oncological Diagnostic Center, Sofia, Bulgaria
c Technical University of Sofia, Branch Plovdiv, Bulgaria
Abstract: Results of investigation of cutaneous benign and malignant pigmented lesions by laser-induced autofluorescence spectroscopy (LIAFS) and diffuse reflectance spectroscopy (DRS) are presented. The autofluorescence of human skin was excited by a 337-nm nitrogen laser. A broadband halogen lamp (400 — 900 nm) was used for diffuse reflectance measurements. A microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign (dermal nevi, compound nevi, dysplastic nevi) and malignant (melanoma) lesions are discussed. The combined usage of the fluorescence and reflectance spectral methods to determine the type of the lesion, which increases the total diagnostic accuracy, is compared with the usage of LIAFS or DRS only. We also applied colorimetric transformation of the reflectance spectra detected and received additional evaluation criteria for determination of type of the lesion under study. Spectra from healthy skin areas near the lesion were detected and changes between healthy and lesion skin spectra were revealed. The influence of the main skin pigments on the detected spectra is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is performed based on their spectral properties. This research shows that the non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to the real-time determination of existing pathological conditions.
Received: 08.01.2008
English version:
Quantum Electronics, 2008, Volume 38, Issue 6, Pages 597–605
DOI: https://doi.org/10.1070/QE2008v038n06ABEH013891
Bibliographic databases:
Document Type: Article
PACS: 42.62.Be, 87.19.xj, 87.50.W-, 87.63.lt, 87.64.kv
Language: Russian


Citation: E. Borisova, P. Troyanova, P. Pavlova, L. Avramov, “Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy”, Kvantovaya Elektronika, 38:6 (2008), 597–605 [Quantum Electron., 38:6 (2008), 597–605]
Linking options:
  • https://www.mathnet.ru/eng/qe13891
  • https://www.mathnet.ru/eng/qe/v38/i6/p597
  • This publication is cited in the following 47 articles:
    1. Asparuh Markovski, Tsanislava Genova, Victoria Mircheva, 2023 International Scientific Conference on Computer Science (COMSCI), 2023, 1  crossref
    2. Valentin Kupriyanov, Walter Blondel, Christian Daul, Marine Amouroux, Yury Kistenev, Journal of Biophotonics, 16:7 (2023)  crossref
    3. Justina Bonaventura, Thomas Graham Knapp, John Koshel, Travis W. Sawyer, David Levitz, Aydogan Ozcan, Optics and Biophotonics in Low-Resource Settings VIII, 2022, 19  crossref
    4. Ge Xu, Liquan Dong, Jing Yuan, Yuejin Zhao, Ming Liu, Mei Hui, Lingqin Kong, Juan Liu, Baohua Jia, Xincheng Yao, Yongtian Wang, Liangcai Cao, Takanori Nomura, 2021 International Conference on Optical Instruments and Technology: Optical Systems, Optoelectronic Instruments, Novel Display, and Imaging Technology, 2022, 14  crossref
    5. E. A. Shirshin, B. P. Yakimov, G. S. Budylin, N. V. Zlobina, D. A. Davydov, A. G. Armaganov, V. V. Fadeev, N. N Sysoev, A. A. Kamalov, Moscow Univ. Phys., 77:6 (2022), 777  crossref
    6. Ge Xu, Liquan Dong, Jing Yuan, Yuejin Zhao, Ming Liu, Mei Hui, Lingqin Kong, Front. Phys., 10 (2022)  crossref
    7. Bratchenko I.A., Bratchenko L.A., Moryatov A.A., Khristoforova Yu.A., Artemyev D.N., Myakinin O.O., Orlov A.E., Kozlov S.V., Zakharov V.P., Exp. Dermatol., 30:5 (2021), 652–663  crossref  isi  scopus
    8. Zaytsev S.M., Blondel W., Amouroux M., Khairallah G., Bashkatov A.N., Tuchin V.V., Genina E.A., Proceedings of Spie, 11457, eds. Tuchin V., Genina E., Spie-Int Soc Optical Engineering, 2020, 1145706  crossref  isi  scopus
    9. Poh A.H., Adikan F.R.M., Moghavvemi M., Med. Biol. Eng. Comput., 58:6 (2020), 1159–1175  crossref  isi  scopus
    10. Borisova E.G., Bratchenko I.A., Khristoforova Yu.A., Bratchenko L.A., Genova Ts.I., Gisbrecht A.I., Moryatov A.A., Kozlov S.V., Troyanova P.P., Zakharov V.P., Opt. Eng., 59:6 (2020), 061616  crossref  isi  scopus
    11. Amalina Binte Ebrahim Attia, Renzhe Bi, Kapil Dev, Yao Du, Malini Olivo, Transl Biophotonics, 2:4 (2020)  crossref
    12. Asparuh Markovski, Latchezar Avramov, TUS, 70:3 (2020), 45  crossref
    13. Ekaterina G. Borisova, Petranka Troyanova, Multimodal Optical Diagnostics of Cancer, 2020, 245  crossref
    14. A. V. Dunaev, Izv. vysš. učebn. zaved. Ross., Radioèlektron., 23:4 (2020), 77  crossref
    15. Khristoforova Yu.A., Bratchenko I.A., Myakinin O.O., Artemyev D.N., Moryatov A.A., Orlov A.E., Kozlov S.V., Zakharov V.P., J. Biophotonics, 12:4 (2019), UNSP e201800400  crossref  isi  scopus
    16. Rakotomanga P., Soussen Ch., Khairallah G., Amouroux M., Zaytsev S., Genina E., Chen H., Delconte M., Daul Ch., Tuchin V., Blondel W., Biomed. Opt. Express, 10:7 (2019), 3410–3424  crossref  isi
    17. Valery P. Zakharov, Ivan A. Bratchenko, Dmitry N. Artemyev, Oleg O. Myakinin, Sergey V. Kozlov, Alexander A. Moryatov, Andrey E. Orlov, Neurophotonics and Biomedical Spectroscopy, 2019, 449  crossref
    18. Borisova E., Genova-Hristova Ts., Troyanova P., Pavlova E., Terziev I., Semyachkina-Glushkovskaya O., Lomova M., Genina E., Stanciu G., Tranca D., Avramov L., Proceedings of Spie, 10467, eds. Choi B., Zeng H., Spie-Int Soc Optical Engineering, 2018, 104670M  crossref  isi  scopus
    19. Borisova E., Genova-Hristova Ts., Troyanova P., Terziev I., Genina E.A., Bashkatov A.N., Semyachkina-Glushkovskaya O., Tuchin V., Avramov L., Proceedings of Spie, 10685, eds. Popp J., Tuchin V., Pavone F., Spie-Int Soc Optical Engineering, 2018, UNSP 106853T  crossref  isi  scopus
    20. Bratchenko I.A., Artemyev D.N., Myakinin O.O., Khristoforova Yu.A., Moryatov A.A., Kozlov S.V., Zakharov V.P., J. Biomed. Opt., 22:2 (2017), 027005  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :160
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025