Abstract:
Saturation of fluorescence of complex organic compounds with a high local concentration of fluorescing molecules (fluorophores), when singlet–singlet annihilation makes a noticeable contribution to saturation, is considered. The fluorescence saturation curve is obtained analytically for the case of a rectangular temporal and spatial distribution of photons in a laser pulse. It is shown that the fluorescence saturation curve depends on the parameter Φ0, which is proportional to the concentration of fluorescing molecules, and on the parameters A, B, and α describing the influence of singlet–singlet annihilation, bleaching of an optically thin layer, and nonstationarity of excitation, respectively. The fluorescence saturation curves are studied experimentally for compounds with a high local concentration of fluorescing molecules such as molecules of a monoculture of diatomic alga Thalassiosira weissflogii. The experimental fluorescence saturation curves are well described by the obtained analytic expression. The values of the parameter Φ0, proportional to the concentration of chlorophyll a, and the parameter A (for the first time) are obtained from the alga fluorescence saturation curves.
Citation:
D. V. Maslov, E. E. Ostroumov, V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton)”, Kvantovaya Elektronika, 36:2 (2006), 163–168 [Quantum Electron., 36:2 (2006), 163–168]
Linking options:
https://www.mathnet.ru/eng/qe12791
https://www.mathnet.ru/eng/qe/v36/i2/p163
This publication is cited in the following 14 articles:
Maslov N.A., J. Fluoresc., 28:2 (2018), 689–693
Victor V. Fadeev, Evgeny A. Shirshin, Handbook of Coherent-Domain Optical Methods, 2013, 1255
Victor V. Fadeev, Maxim Y. Gorbunov, Timofey S. Gostev, J. Biophoton, 2012, n/a
S. S. Voznesenskiy, Yu. N. Kul’chin, A. N. Galkina, Nanotechnol Russia, 6:1-2 (2011), 43
T. S. Gostev, F. I. Kouzminov, S. A. Moiseev, Bull. Lebedev Phys. Inst, 38:1 (2011), 12
Quantum Electron., 41:5 (2011), 414–419
Alexandr A. Banishev, Evgeny A. Shirshin, Victor V. Fadeev, Appl. Opt, 49:34 (2010), 6637
A A Banishev, E P Vrzheshch, E A Shirshin, QUANTUM ELECTRON, 39:3 (2009), 273
Yu. N. Kul’chin, S. S. Voznesenski, O. A. Bukin, A. V. Bezverbnyǐ, A. L. Drozdov, I. G. Nagorny, A. N. Galkina, Opt Spectrosc, 107:3 (2009), 442
Yu. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, A. N. Galkina, A. L. Drozdov, I. G. Nagorny, Progress in Molecular and Subcellular Biology, 47, Biosilica in Evolution, Morphogenesis, and Nanobiotechnology, 2009, 315
A. A. Banishev, E. A. Shirshin, V. V. Fadeev, Laser Phys, 18:7 (2008), 861
Yu. N. Kulchin, S. S. Voznesenskiy, O. A. Bukin, S. N. Bagaev, E. V. Pestriakov, Opt Mem Neural Networks, 16:4 (2007), 189