Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1976, Volume 3, Number 9, Pages 2061–2063 (Mi qe11857)  

Brief Communications

Profile of a two-photon resonant absorption line calculated allowing for the quadratic Doppler effect

V. G. Minogin
Abstract: The profile of a two-photon resonant absorption line of a particle subjected to a standing optical wave is calculated allowing for the quadratic Doppler effect. It is shown that the line profile is governed entirely by the ratio of the homogeneous line width to the quadratic Doppler frequency shift. An exact expression is obtained for the line profile in the second order in ν/c and the main approximations are considered. The profiles are calculated for the 1S–2S and 1S–3S transitions in the hydrogen atom.
Received: 09.02.1976
English version:
Soviet Journal of Quantum Electronics, 1976, Volume 6, Issue 9, Pages 1124–1126
DOI: https://doi.org/10.1070/QE1976v006n09ABEH011857
Document Type: Article
UDC: 535.343.4
PACS: 32.10.Nw, 32.10.Dk
Language: Russian


Citation: V. G. Minogin, “Profile of a two-photon resonant absorption line calculated allowing for the quadratic Doppler effect”, Kvantovaya Elektronika, 3:9 (1976), 2061–2063 [Sov J Quantum Electron, 6:9 (1976), 1124–1126]
Linking options:
  • https://www.mathnet.ru/eng/qe11857
  • https://www.mathnet.ru/eng/qe/v3/i9/p2061
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024