Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 1975, Volume 2, Number 2, Pages 281–286 (Mi qe10876)  

This article is cited in 6 scientific papers (total in 6 papers)

Nonstationary modes of an open resonator

I. F. Balashov, V. A. Berenberg
Full-text PDF (709 kB) Citations (6)
Abstract: A description is given of a method for calculating fields in open resonators. This method uses the Schmidt expansion of continuously variable operators and it makes it possible to find a complete orthonormalized system of functions. An analysis of the process of establishment of oscillations in a resonator with infinite inhomogeneous mirrors is used to demonstrate that a system of nonstationary modes arises necessarily in such a resonator.
Received: 16.04.1974
Revised: 04.07.1974
English version:
Soviet Journal of Quantum Electronics, 1975, Volume 5, Issue 2, Pages 159–161
DOI: https://doi.org/10.1070/QE1975v005n02ABEH010876
Document Type: Article
UDC: 621.378.325
PACS: 42.55.Ah, 42.60.Da, 42.79.Bh
Language: Russian


Citation: I. F. Balashov, V. A. Berenberg, “Nonstationary modes of an open resonator”, Kvantovaya Elektronika, 2:2 (1975), 281–286 [Sov J Quantum Electron, 5:2 (1975), 159–161]
Linking options:
  • https://www.mathnet.ru/eng/qe10876
  • https://www.mathnet.ru/eng/qe/v2/i2/p281
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Квантовая электроника Quantum Electronics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024