Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2013, Issue 6, Pages 48–52 (Mi pu821)  

Control in the socio-economic systems

Increasing of foreign exchange hedging effectiveness based on results of neurostructural prediction

P. V. Saraeva, Yu. E. Syaglovab

a Lipetsk State Technical University
b Lipetsk
References:
Abstract: The paper gives the analysis of effectiveness of using results of time series neurostructural prediction (exchange rates) in hedging of currency risks using derivative financial instruments. Description of the developed software is given. The technique of computation of effectiveness of use of neurostructural predictions is considered. Results of computational experiments are provided.
Keywords: neurostructural modeling, time series prediction, foreign exchange hedging.
Document Type: Article
UDC: 004.8
Language: Russian
Citation: P. V. Saraev, Yu. E. Syaglova, “Increasing of foreign exchange hedging effectiveness based on results of neurostructural prediction”, Probl. Upr., 2013, no. 6, 48–52
Citation in format AMSBIB
\Bibitem{SarSya13}
\by P.~V.~Saraev, Yu.~E.~Syaglova
\paper Increasing of foreign exchange hedging effectiveness based on results of neurostructural prediction
\jour Probl. Upr.
\yr 2013
\issue 6
\pages 48--52
\mathnet{http://mi.mathnet.ru/pu821}
Linking options:
  • https://www.mathnet.ru/eng/pu821
  • https://www.mathnet.ru/eng/pu/v6/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024