Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2004, Issue 1, Pages 20–27 (Mi pu493)  

This article is cited in 1 scientific paper (total in 1 paper)

Information technologies controls

Neuronet models for complex process description

L. A. Kuznetsov, P. A. Domashnev

Lipetsk State Technical University
Full-text PDF (205 kB) Citations (1)
References:
Abstract: A methodology for developing a model of a complex multistage process based on multi-layer neuron network is described. The neuronet model structure for a multi-stage process and an algorithm for its formation are described. The neuronet model learning procedure is considered. The paper shows that the learning process can be reduced to the minimization of a multivariable function. The equations for analytical recalculation of loss function's gradient are derived that allow the application of effective optimization techniques for network learning.
Document Type: Article
UDC: 65.015.13:001.57
Language: Russian
Citation: L. A. Kuznetsov, P. A. Domashnev, “Neuronet models for complex process description”, Probl. Upr., 2004, no. 1, 20–27
Citation in format AMSBIB
\Bibitem{KuzDom04}
\by L.~A.~Kuznetsov, P.~A.~Domashnev
\paper Neuronet models for complex process description
\jour Probl. Upr.
\yr 2004
\issue 1
\pages 20--27
\mathnet{http://mi.mathnet.ru/pu493}
Linking options:
  • https://www.mathnet.ru/eng/pu493
  • https://www.mathnet.ru/eng/pu/v1/p20
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :120
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024