Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2008, Issue 2, Pages 34–41 (Mi pu143)  

This article is cited in 2 scientific papers (total in 2 papers)

Control in the socio-economic systems

Methodological aspects of practical regression estimation

E. K. Kornoushenko

Institute of Control Sciences, Russian Academy of Sciences
Full-text PDF (266 kB) Citations (2)
References:
Abstract: An approach is proposed for the case of heterogeneous samples where the original observations (objects) sample breaks up into classes with significantly different values of the dependent variable (but not the regressors) which are sufficiently representative for building an independent regression model in each class. A case study shows how the approach proposed enables estimation quality improvement against the conventional regression method.
Document Type: Article
UDC: 519.25
Language: Russian
Citation: E. K. Kornoushenko, “Methodological aspects of practical regression estimation”, Probl. Upr., 2008, no. 2, 34–41
Citation in format AMSBIB
\Bibitem{Kor08}
\by E.~K.~Kornoushenko
\paper Methodological aspects of practical regression estimation
\jour Probl. Upr.
\yr 2008
\issue 2
\pages 34--41
\mathnet{http://mi.mathnet.ru/pu143}
Linking options:
  • https://www.mathnet.ru/eng/pu143
  • https://www.mathnet.ru/eng/pu/v2/p34
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024