Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2024, Issue 4, Pages 13–25
DOI: https://doi.org/10.25728/pu.2024.4.2
(Mi pu1360)
 

Information technologies controls

Investigation of tandem queuing systems using machine learning methods

V. M. Vishnevsky, A. A. Larionov, A. A. Mukhtarov, A. M. Sokolov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: This paper considers tandem queuing systems with limited buffer sizes in each phase. The system handles an incoming correlated MAP flow and the service time obeys a PH-distribution. Models of such systems and methods for their investigation are briefly reviewed from the historical perspective. According to the review, the problem statement presented below, the methods proposed for solving this problem, and the corresponding results are novel. An accurate algorithm for calculating the performance characteristics of low-dimensional tandem queuing systems is described, including an estimate of the algorithm's complexity. An approach using both machine learning and simulation modeling is suggested for the investigation of high-dimensional tandem queuing systems. Numerical analysis results are provided to show the effectiveness of machine learning methods for estimating the performance of tandem queuing systems.
Keywords: tandem queuing system, analytical model, simulation modeling, machine learning.
Funding agency Grant number
Russian Science Foundation 22-49-02023
This work was supported by the Russian Science Foundation, project no. 22-49-02023, https://rscf.ru/project/22-49-02023/.
Received: 01.08.2024
Revised: 06.09.2024
Accepted: 13.09.2024
English version:
Control Sciences, 2024, Issue 4, Pages 10–21
DOI: https://doi.org/10.25728/cs.2024.4.2
Document Type: Article
UDC: 519.872
Language: Russian
Citation: V. M. Vishnevsky, A. A. Larionov, A. A. Mukhtarov, A. M. Sokolov, “Investigation of tandem queuing systems using machine learning methods”, Probl. Upr., 2024, no. 4, 13–25; Control Sciences, 2024, no. 4, 10–21
Citation in format AMSBIB
\Bibitem{VisLarMuk24}
\by V.~M.~Vishnevsky, A.~A.~Larionov, A.~A.~Mukhtarov, A.~M.~Sokolov
\paper Investigation of tandem queuing systems using machine learning methods
\jour Probl. Upr.
\yr 2024
\issue 4
\pages 13--25
\mathnet{http://mi.mathnet.ru/pu1360}
\crossref{https://doi.org/10.25728/pu.2024.4.2}
\transl
\jour Control Sciences
\yr 2024
\issue 4
\pages 10--21
\crossref{https://doi.org/10.25728/cs.2024.4.2}
Linking options:
  • https://www.mathnet.ru/eng/pu1360
  • https://www.mathnet.ru/eng/pu/v4/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024