Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2023, Issue 4, Pages 3–13
DOI: https://doi.org/10.25728/pu.2023.4.1
(Mi pu1318)
 

Analysis and synthesis of control systems

Parametric optimization of a nonlinear model in tumor cell growth identification

V. N. Afanas'eva, N. A. Frolovab

a HSE Tikhonov Moscow Institute of Electronics and Mathematics, Moscow, Russia
b Lomonosov Moscow State University
References:
Abstract: This paper presents an identification method for time-varying objects that involves mathematical models with parametric tuning. The deviation of object's transients and its mathematical model are estimated in terms of a quadratic performance criterion; the parametric tuning of the object model is a constrained optimization problem. The parametric optimization algorithm is developed using the vector projection property in a Krein space and the second Lyapunov method for a targeted change in the model parameters. The method is applied to estimate parameters in a tumor cell growth model. The nonlinear model describes the relationship between the populations of normal, immune, and tumor cells that can be measured in the presence of Gaussian white noise. Numerical simulation illustrates the design procedure and shows the effectiveness of this method.
Keywords: parametric optimization, identification, cost function, nonlinear differential equations, Lyapunov method, Wiener–Hopf equation.
Received: 23.10.2022
Revised: 23.02.2023
Accepted: 14.03.2023
English version:
Control Sciences, 2023, Issue 4, Pages 2–11
DOI: https://doi.org/10.25728/cs.2023.4.1
Document Type: Article
UDC: 681.511.4; 616-006.04
Language: Russian
Citation: V. N. Afanas'ev, N. A. Frolova, “Parametric optimization of a nonlinear model in tumor cell growth identification”, Probl. Upr., 2023, no. 4, 3–13; Control Sciences, 2023, no. 4, 2–11
Citation in format AMSBIB
\Bibitem{AfaFro23}
\by V.~N.~Afanas'ev, N.~A.~Frolova
\paper Parametric optimization of a nonlinear model in tumor cell growth identification
\jour Probl. Upr.
\yr 2023
\issue 4
\pages 3--13
\mathnet{http://mi.mathnet.ru/pu1318}
\crossref{https://doi.org/10.25728/pu.2023.4.1}
\transl
\jour Control Sciences
\yr 2023
\issue 4
\pages 2--11
\crossref{https://doi.org/10.25728/cs.2023.4.1}
Linking options:
  • https://www.mathnet.ru/eng/pu1318
  • https://www.mathnet.ru/eng/pu/v4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :14
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024