Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2023, Issue 1, Pages 26–35
DOI: https://doi.org/10.25728/pu.2023.1.3
(Mi pu1302)
 

Control of medicobiologic systems

Real data-based personalization of an automatic glucose control system

A. I. Mikhalskiia, J. A. Novoseltsevaa, T. P. Shestakovab

a Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
b Vladimirskii Moscow Regional Research Clinical Institute (MONIKI), Moscow, Russia
References:
Abstract: This paper overviews the application of machine learning and data analysis methods in medicine. The problem of constructing a closed personalized automatic control system for blood glucose level is considered. Such a system focuses on a particular patient and involves glucose level measurements in the interstitial space by a sensor. We describe a modification of the glucose level regulation model for the blood of a patient during the intake of glucose with meals and the supply of exogenous insulin into the bloodstream. Also, we propose an isolating search method for a group of personalized model parameters to be identified individually. As an example, model parameters are identified for a patient with type 1 diabetes based on real data, and the optimal PD control law of exogenous insulin supply is applied in the identified model. The result is compared with the actual glycemic curve after a single administration of insulin to the patient as recommended by a physician. As shown, the optimal PD control law effectively stabilizes blood glucose level to avoid the development of hypoglycemia. The results of this paper can be used to design automatic glucose control systems for humans (insulin pumps).
Keywords: blood glucose control, continuous glycemic curve, simplified mathematical model, personalized model parameters, PD controller.
Received: 12.12.2022
Accepted: 30.01.2023
English version:
Control Sciences, 2023, Issue 1, Pages 21–28
DOI: https://doi.org/10.25728/cs.2023.1.3
Document Type: Article
UDC: 004.942
Language: Russian
Citation: A. I. Mikhalskii, J. A. Novoseltseva, T. P. Shestakova, “Real data-based personalization of an automatic glucose control system”, Probl. Upr., 2023, no. 1, 26–35; Control Sciences, 2023, no. 1, 21–28
Citation in format AMSBIB
\Bibitem{MikNovShe23}
\by A.~I.~Mikhalskii, J.~A.~Novoseltseva, T.~P.~Shestakova
\paper Real data-based personalization of an automatic glucose control system
\jour Probl. Upr.
\yr 2023
\issue 1
\pages 26--35
\mathnet{http://mi.mathnet.ru/pu1302}
\crossref{https://doi.org/10.25728/pu.2023.1.3}
\transl
\jour Control Sciences
\yr 2023
\issue 1
\pages 21--28
\crossref{https://doi.org/10.25728/cs.2023.1.3}
Linking options:
  • https://www.mathnet.ru/eng/pu1302
  • https://www.mathnet.ru/eng/pu/v1/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
    Statistics & downloads:
    Abstract page:63
    Russian version PDF:35
    English version PDF:18
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024