Problemy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Upravleniya, 2021, Issue 2, Pages 3–17
DOI: https://doi.org/10.25728/pu.2021.2.1
(Mi pu1228)
 

Reviews

State estimation methods for fuzzy integral models. Part II: Least squares method and direct variational calculus methods

N. P. Demenkova, E. A. Mikrinba, I. A. Mochalova

a Bauman Moscow State Technical University, Moscow, Russia
b Energy corporation
References:
Abstract: This paper considers the least squares method (LSM) and its modifications for estimating the states of fuzzy integral models, namely, LSM with numerical integration, recurrent and nonlinear LSM, and fuzzy LSM, which is based on fuzzy rules for finding diagonal elements of the weight matrix in generalized LSM. Some examples of fuzzy systems of linear equations (FSLE) that arise in state estimation problems for fuzzy integral models are given and solved. The fuzzy Galerkin method is implemented for the approximate state estimation of a fuzzy integral model. This method leads to a complete FSLE. The emergence of «strong» and «weak» systems is explained using an illustrative example. Chebyshev quadrature methods and sinc functions for the approximate structural estimation of fuzzy integral models are considered. As noted in the paper, the same methodology can be applied to develop other algorithms for estimating fuzzy integral models based on the following methods: residuals, collocation, energy, Ritz, Courant, etc.
Keywords: fuzzy least squares method, fuzzy Galerkin method, fuzzy Chebyshev method, fuzzy sinc method.
Received: 21.02.2020
Revised: 05.03.2021
Accepted: 05.03.2021
English version:
Control Sciences, 2021, Volume 2, Pages 2–15
DOI: https://doi.org/10.25728/cs.2021.2.1
Document Type: Article
UDC: 517.97
Language: Russian
Citation: N. P. Demenkov, E. A. Mikrin, I. A. Mochalov, “State estimation methods for fuzzy integral models. Part II: Least squares method and direct variational calculus methods”, Probl. Upr., 2021, no. 2, 3–17; Control Sciences, 2 (2021), 2–15
Citation in format AMSBIB
\Bibitem{DemMikMoc21}
\by N.~P.~Demenkov, E.~A.~Mikrin, I.~A.~Mochalov
\paper State estimation methods for fuzzy integral models. Part II: Least squares method and direct variational calculus methods
\jour Probl. Upr.
\yr 2021
\issue 2
\pages 3--17
\mathnet{http://mi.mathnet.ru/pu1228}
\crossref{https://doi.org/10.25728/pu.2021.2.1}
\transl
\jour Control Sciences
\yr 2021
\vol 2
\pages 2--15
\crossref{https://doi.org/10.25728/cs.2021.2.1}
Linking options:
  • https://www.mathnet.ru/eng/pu1228
  • https://www.mathnet.ru/eng/pu/v2/p3
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы управления
    Statistics & downloads:
    Abstract page:168
    Russian version PDF:57
    English version PDF:34
    References:31
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024