Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Random geometry and physics
September 9, 2014 17:20–17:40, Moscow
 


The functional mechanics in General relativity

A. Mikhaylov
Video records:
Flash Video 113.5 Mb
Flash Video 681.5 Mb
MP4 432.7 Mb

Number of views:
This page:242
Video files:69

A. Mikhaylov



Abstract: Functional reformulation of classical mechanics was proposed by I. V. Volovich to solve the irreversibility problem of macroscopic dynamics arising in the justification of thermodynamics. Description of the microscopic state of the system by distribution function in the functional mechanics allows to include directly in the equations of dynamics the finite precision of the measurements. This report discusses the derivation of the basic equation of the functional mechanics (special form of the Liouville equation) for a material point on the $(d+1)$-dimensional space-time manifold in General relativity. The conditions of normalization of the distribution function and the formulation of the Cauchy problem, which significantly depends on the choice of the reference system, are specified. The relationship between the probability densities in different noninertial frames of reference is established by example of two-dimensional Rindler space (classical analogue of Unruh effect). The penetration under the event horizon of a Schwarzschild black hole distribution function corresponding to the solution of the Liouville equation for a freely falling particle is described, which may allow to advance in the resolution of the paradox formation of black holes.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024