Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Random geometry and physics
September 9, 2014 12:10–13:00, Moscow
 


High-dimensional random landscapes and random matrices

Ya. V. Fyodorov
Video records:
Flash Video 2,082.5 Mb
Flash Video 348.3 Mb
MP4 1,326.2 Mb

Number of views:
This page:354
Video files:178

Ya. V. Fyodorov



Abstract: Most of optimization problems can be formulated as search of the global minimum of a cost function which is convenient to think of as a landscape in configuration space. When landscapes are high-dimensional and random the search is difficult and one would like to understand generic features of such landscapes. Simple, yet rich and non-trivial models of random landscapes are provided by mean-field spin glasses and related systems. I am going to present a picture of the “topology trivialization transition” (in the sense of an abrupt reduction of the number of stationary points and minima of the underlying energy landscape) which takes place in the vicinity of the zero-temperature glass transition of p-spin spherical model of spin glasses. In particular, I will emphasize the role of the “edge scaling” and the Tracy–Widom distribution of the largest eigenvalues of random matrices for providing some universal features of the above transition. I also discuss how similar methods can be used for counting equilibria in a system of autonomous random differential equations and for getting bounds on the number of connected domains of random algebraic varieties. The results to be presented in the talk were obtained in recent joint works with C. Nadal, P. Le Doussal, B. Khoruzhenko, A. Lerrio, and E. Lundberg.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024