Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Workshop on Extremal Graph Theory
June 6, 2014 17:00, Moscow
 


Local clustering coefficient in preferential attachment graphs

A. M. Krota, L. A. Ostroumova, E. A. Samosvat

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Video records:
Flash Video 495.5 Mb
MP4 495.5 Mb

Number of views:
This page:247
Video files:48



Abstract: In this talk we discuss some properties of generalized preferential attachment models. A general approach to preferential attachment was introduced in [1], where a wide class of models (PA-class) was defined in terms of constraints that are sufficient for the study of the degree distribution and the clustering coefficient.
It was shown in [1] that the degree distribution in all models of the PA-class follows the power law. Also, the global clustering coefficient was analyzed and a lower bound for the average local clustering coefficient was obtained. It was also shown that in preferential attachment models global and average local clustering coefficients behave differently.
In our study we expand the results of [1] by analyzing the local clustering coefficient for the PA-class of models. We analyze the behavior of $C(d)$ which is the average local clustering for vertices of degree $d$. The value $C(d)$ is defined in the following way. First, the local clustering of a given vertex is defined as the ratio of the number of edges between the neighbors of this vertex to the number of pairs of such neighbors. Then the obtained values are averaged over all vertices of degree $d$.

Language: English

Website: https://tech.yandex.ru/events/workshops/msk-jun-2014/talks/1919

References
  1. L. Ostroumova, A. Ryabchenko, E. Samosvat, “Generalized Preferential Attachment: Tunable Power-Law Degree Distribution and Clustering Coefficient”, Algorithms and Models for the Web Graph, Lecture Notes in Computer Science, 8305, 2013, 185–202  crossref  zmath  scopus
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024