Abstract:
The roto-translation group, $SE(2)$, is a three-dimensional topological manifold diffeomorphic to $\mathbb{R}^{2}\times\mathbb{S}^{1}$ with coordinates $(x,y,\theta)$. The left-invariant vector fields
$$
X_{1}=\cos\theta\frac{\partial}{\partial x}+\sin\theta\frac{\partial}{\partial y},\; X_{2}=\frac{\partial}{\partial\theta},\; X_{3}=-\sin\theta\frac{\partial}{\partial x}+\cos\theta\frac{\partial}{\partial y},
$$
form a basis of the Lie algebra of $SE(2)$. The bracket-generating subbundle of the tangent-bundle is spanned by the frame $X_{1}$, $X_{2}$.
Consider the basic 1-forms $dX_{1}$, $dX_{2}$, $dX_{3}$, dual to the basic vector fields $X_{1}$, $X_{2}$, $X_{3}$, i. e., $dX_{i}(X_{j})=\delta_{ij}$. Applying the methods developed in [1] we establish a key relation underlying the connection between mappings with bounded distortion [2] and nonlinear potential theory.
$ $ Theorem.Let$SE(2)$be a roto-translation group and$\Omega\subset SE(2)$is an open set. Suppose that$f\colon\Omega\to SE(2)$is a Sobolev mapping of the class$W^{1}_{4,\mathrm{loc}}(\Omega)$, $V\colon SE(2)\to\mathbb{R}^2$is a vector field$V=(v_{1},v_{2})\in C^{1}$such that$\mathrm{div}_{h}V=X_{1}v_{1}+X_{2}v_{2}$is bounded on$SE(2)$, and $$
\omega(g)=v_{1}(g)\,dX_{2}\wedge dX_{3}-v_{2}(g)\,dX_{1}\wedge dX_{3},\quad g\in\Omega.
$$ Then the equality$df^{\#}\omega=f^{\#}d\omega$holds in the sense of distributions.
S. K. Vodopyanov, Foundations of the Theory of Mappings with Bounded Distortion on Carnot Groups. // Contemporary Mathematics. 2007. V. 424, pp. 303–344.
Yu. G. Reshetnyak, Space mappings with bounded distortion. Translation of Mathematical Monographs, vol. 73. American Mathematical Society, Providence, RI, 1989.