Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International youth conference "Geometry & Control"
April 14, 2014 12:50, Moscow, Steklov Mathematical Institute of RAS
 


Diffusion by Optimal Transport in the Heisenberg Group

Nicolas Juillet

Université de Strasbourg, France
Video records:
Flash Video 317.4 Mb
Flash Video 1,901.4 Mb
MP4 1,164.5 Mb
Supplementary materials:
Adobe PDF 126.3 Kb
Adobe PDF 55.2 Kb

Number of views:
This page:374
Video files:127
Materials:98

Nicolas Juillet



Abstract: In this talk, we will consider the hypoelliptic diffusion, the “heat diffusion” of the subRiemannian Heisenberg group $\mathbb{H}$. We will show that in the Wasserstein space $\mathcal{P}_2(\mathbb{H})$, the space of probability measures with finite second moment, it is a curve driven by the gradient flow of the Boltzmann entropy, $\mathrm{Ent}: \mathcal{P}_2\to \mathbb{R}\cup\{\infty\}$. Conversely any gradient flow curve of $\mathrm{Ent}$ satisfies the hypoelliptic heat equation.
This illustrates and completes the theory of Ambrosio, Gigli ans Savaré about the gradient flows of $\mathrm{Ent}$ on the Wasserstein spaces of some very general metric spaces.

Supplementary materials: slides.pdf (126.3 Kb) , abstract.pdf (55.2 Kb)

Language: English

References
  1. Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Inventiones Mathematicae, 2013 (to appear)
  2. Nicolas Juillet, Diffusion by optimal transport in Heisenberg groups. Calculus of Variations and PDEs, 2013
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024