Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference in memory of A. A. Karatsuba on number theory and applications
January 31, 2014 12:30–12:55, Moscow, Steklov Mathematical Institute, Conference-Hall
 


The distribution of the values of Dirichlet characters over the sequence of shifted primes

Z. Kh. Rakhmonov
Video records:
Flash Video 533.6 Mb
Flash Video 89.2 Mb
MP4 326.8 Mb

Number of views:
This page:465
Video files:138

Z. Kh. Rakhmonov



Abstract: The talk is devoted to the following result of the speaker:
Theorem. Let $q$ be a sufficiently large natural number, and suppose that $\chi_{q}$ is a primitive character modulo $q$. Suppose also that $(l,q)=1$, and let $\varepsilon$ be arbitrary small positive constant, $\mathcal{L}\,=\,\ln q$, $x\geqslant q^{\,5/6+\varepsilon}$. Then we have:
$$ T(\chi_q )=\sum_{p\,\leqslant\, x}\chi_q(p-l)\ll x\exp\bigl(-\sqrt{\mathcal{L}}\bigr). $$

This estimate improves the result of J.B. Friedlander, K. Gong and I.E. Shparlinski (2010), which is non -trivial only for $x\geqslant q^{\,8/9+\varepsilon}$.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024