Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference dedicated to the 60-th birthday of Boris Feigin "Representation Theory and applications to Combinatorics, Geometry and Quantum Physics"
December 13, 2013 15:30–16:20, Moscow, Independent University of Moscow
 


Demazure Descent Data and Braid group actions on categories

S. M. Arkhipov
Video records:
Flash Video 453.4 Mb
MP4 594.2 Mb

S. M. Arkhipov



Abstract: We recall the classical notion of Demazure operators acting on the $K$-theory of a $G$-variety $X$, $G$ being a reductive algebraic group.
Then we propose a categorification of the algebra generated by Demazure operators and introduce the notion of Demazure Descent Data (DDD) on a category. We define the descent category for a DDD on a triangulated category $C$.
We explain how DDD arises naturally from a monoidal action of the tensor category of quasicoherent sheaves on $B\setminus G/B$ on a category. A natural example of such picture is provided by the derived category of quasicoherent sheaves on $X/B$ for a scheme $X$ with an action of the reductive group $G$. The descent category in this case is the derived category of quasicoherent sheaves on $X/G$.
Next we replace the category of quasicoherent sheaves by DG-modules over the algebra of differential forms on $X$. We explain how an analog of the construction above gives rise to a braid group action of a category.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024