Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference "QP 34 – Quantum Probability and Related Topics"
September 17, 2013 12:00–12:30, Moscow, Steklov Mathematical Institute of RAS
 


On the normal form of multimode squeezings

A. M. Chebotarev, T. V. Tlyachev, A. E. Teretenkov, V. V. Belokurov

M. V. Lomonosov Moscow State University
Video records:
Flash Video 237.3 Mb
Flash Video 1,420.8 Mb
MP4 870.1 Mb

Number of views:
This page:537
Video files:214

A. M. Chebotarev, T. V. Tlyachev, A. E. Teretenkov, V. V. Belokurov



Abstract: We describe the solution of algebraic equations for the coefficients of the normal factorization
$$ U_t=e^{i\widehat H t}=e^{s_t}e^{-\frac{1}{2}(a^\dagger,R_ta^\dagger)-(g_t,a^\dagger)}\,e^{(a^\dagger,C_t a)}\,e^{\frac{1}{2} (a,\overline\rho_t a)+(\overline f_t,a)} $$
of the unitary group $U_t$ with Hamiltonian
$$ \widehat H= \frac{i}{2}((a^\dagger,Aa^\dagger)-(a,\overline A a))+(a^\dagger,B a)+i(a^\dagger,h)-i(a,\overline h) $$
in terms of the matrices $\Phi_t$, $\Psi_t$ which define the canonical transformation of the creation-annihilation operators. Such a decomposition defines the normal symbol of squeezing and the inner products of squeezed states which are necessary for constructing a basis in a linear hull generated by a finite set of squeezed states. A new class of solvable quantum problems is related to Hamiltonians with $A$ and $B$ such that $[A\overline A,B]=0$ and $\operatorname{rank}A\overline A\ge \operatorname{rank}B$. In this case, the solution is expressed in terms of the eigenvalues of the Hermitian matrix $A\overline A-B^2$.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024