Loading [MathJax]/jax/output/CommonHTML/jax.js
Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Iskovskikh Seminar
March 14, 2013 18:00, Moscow, Steklov Mathematical Institute, room 530
 


Quotients of del Pezzo surfaces

A. S. Trepalin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Number of views:
This page:252

Abstract: Any unirational surface is rational over an algebraic closed field. But for nonclosed fields it is not true. For example, any Del Pezzo surface of degre 2, 3 or 4 is unirational but it can be nonrational. One of the important classes of unirational surfaces are quoients of rational surfaces. We will proof the following results about quotients of rational surfaces:
1) If X is a Del Pezzo surface, X(k), K2X5, GAut(X), then X/G — k-rational.
2) If X is a Del Pezzo surface, X(k), K2X=4, GAut(X), G{1}, then X/G — k-rational.
3 If X is a Del Pezzo surface, X(k), K2X=3, GAut(X), G{1}, C3, then X/G — k-rational.
4) If X is a Del Pezzo surface, X(k) is dense, K2X=2, GAut(X), G{1}, C2, C22, C4, D4, Q8, then X/G — k-rational.
5) If X is a Del Pezzo surface, X(k) is dense, K2X=1, GAut(X), G{1}, C2, C3, C6, S3, then X/G — k-rational.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025