|
|
Seminar on Complex Analysis (Gonchar Seminar)
January 21, 2013 18:00, Moscow, Steklov Mathematical Institute, Room 411 (8 Gubkina)
|
|
|
|
|
|
The third-order differential equation for Hermite–Padé polynomials
S. P. Suetin Steklov Mathematical Institute of the Russian Academy of Sciences
|
Number of views: |
This page: | 546 |
|
Abstract:
We shall prove the following result.
Theorem.
Let function $f(z)=\bigl((z-1)/(z+1)\bigr)^{\alpha}$ be holomorphic when $z\notin[-1,1]$,
$2\alpha\in\mathbb C\setminus\mathbb Z$ and $f(\infty)=1$. Let
$Q_{n,0},Q_{n,1},Q_{n,2}\not\equiv0$ are Hermite–Padé polynomials of degree
$n$ for the system $1,f,f^2$, that is
$$
\bigl(Q_{n,0}+Q_{n,1}f+Q_{n,2}f^2\bigr)(z)
=O\biggl(\frac1{z^{2n+2}}\biggr),\quad z\to\infty.
$$
Then the polinomial $Q_{n,0}$ and functions $Q_{n,1}f$ and $Q_{n,2}f^2$ are
the solutions of the following differential equation of third degree:
\begin{align}
(z^2-1)^2w'''
&+6(z^2-1)(z-\alpha)w''\notag\\
&-\bigl[3(n-1)(n+2)z^2+12\alpha z-(3n(n+1)+8\alpha^2-10)\bigr]w'\notag\\
&+2\bigl[n(n^2-1)z+\alpha(3n(n+1)-8)\bigr]w=0.
\notag
\end{align}
|
|