Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Topological Conference "Alexandroff Readings"
May 25, 2012 10:30–11:30, Moscow
 


Countable Dense Homogeneity

J. van Mill

Vrije Universiteit Amsterdam

Number of views:
This page:145

J. van Mill

Abstract: We prove that a connected, countable dense homogeneous space is $n$-homogeneous for every $n$, and strongly 2-homogeneous provided it is locally connected. We also present an example of a connected and countable dense homogeneous space which is not strongly 2-homogeneous. We prove that a countable dense homogeneous space has size at most continuum. If it moreover is compact, then it is first-countable under the Continuum Hypothesis. We also construct under the Continuum Hypothesis an example of a hereditarily separable, hereditarily Lindelöf, countable dense homogeneous compact space of uncountable weight. We also discuss locally compact separable metrizable spaces with a finite number of types of countable dense sets and prove a structure theorem for them. Some of the presented results were obtained with A.V. Arhangelskii and M. Hrusak.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024