Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference "Geometrical Methods in Mathematical Physics"
December 17, 2011 10:00–10:45, Moscow, Lomonosov Moscow State University
 


The solutions of the heat and Burgers equations in terms of elliptic sigma functions

V. M. Buchstaber

Steklov Mathematical Institute of the Russian Academy of Sciences
Supplementary materials:
Adobe PDF 220.7 Kb

Number of views:
This page:357
Materials:78

Abstract: The algebra of differential operators along $z,g_{2}$ and $g_{3}$, which annihilate the Weierstrass function $\sigma (z,g_{2},g_{3})$, is extracted from classical works and solves the problem of differentiation of elliptic functions along parameters $g_{2},g_{3}$ and, correspondingly, the problem of differentiation of some important dynamical system solutions along initial data. Using the generators of this algebra, we get dynamics on C$ ^{3} $, and on this basis the family of solutions of the heat equation in terms of the $\sigma $-function. The dynamics are determined by a solution of the Chazy equation.
Using the Cole-Hopf transformation and our solutions of the heat equation, we obtain solutions of the Burgers equation in terms of Weierstrass functions. The explicit formulas for the differentiation of this solutions by the initial data are obtained.
We show that the function $\phi (z,\tau )=\sigma (z;g_{2}(\tau ),g_{3}(\tau ))$ is a solution of the equation
\begin{equation*} 8\dot{\phi}=4\phi ^{\prime \prime }+u(\tau )z^{2}\phi \end{equation*}
with $u(\tau )=\wp (\tau +d,0,b_{3})$.
The natural problem to describe solutions of the heat and Burgers equations in terms of solutions of the previous differential equation with $u(\tau )=\wp (\tau +d,b_{2},b_{3})$ arises. We came to an ordinary differential equation of order 5 with solutions that in the case $b_{2}=0$ are defined by the solutions of the Chazy equation.
Results presented in the talk were obtained in recent joint works with E.Yu. Bunkova. Main definitions will be introduced during the talk.

Supplementary materials: gmmp2011_vmbuchstaber.pdf (220.7 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024