Loading [MathJax]/jax/output/CommonHTML/jax.js
Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Lie groups and invariant theory
May 4, 2005 16:20, Moscow, MSU main building, room 13-06
 


Good index behaviour (based on a joint work with D. I. Panyushev)

O. S. Yakimova

Number of views:
This page:171

Abstract: Let G be an algebraic group with Lie algebra g and V a G-module. The index of the representation G:V is the minimal codimension of the G-orbits in the dual space V. Let Gv be the stabiliser of vV and gv the tangent space to the orbit Gv. Say that G:V has a good index behaviour (GIB) if the index of Gv:V/(gv) equals the index of G:V for each vV. In case of the (co)adjoint action of a reductive group condition of (GIB) is equivalent to the Elashvili conjecture on the index of centralises recently proved by Charbonnel. In general, the index of Gv:V/(gv) is greater or equal than the index of G:V.
In this talk, we give several conditions, which are sufficient for (GIB). Then the isotropy representations of symmetric pairs are studied in details. It turns out, that they do not always have (GIB), so Elashvili conjecture cannnot be generalised to all symmetric spaces of reductive groups.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025