Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Sino-Russian Interdisciplinary Mathematical Conference-2
November 26, 2024 10:30–11:20, Moscow, MIAN, conference hall, floor 9
 


The Chern–Dold character in complex cobordisms

Victor Buchstaber
Video records:
MP4 724.8 Mb
Supplementary materials:
Adobe PDF 619.7 Kb

Victor Buchstaber
Photo Gallery



Abstract: Let $A^{n+1} = \mathbb{C}^{n+1}/\Gamma$ be a principally polarised abelian variety. The space of holomorphic sections of its canonical line bundle $L$ is one-dimensional and generated by the classical Riemann $\theta$-function. According to the Andreotti–Mayer theorem (1967) for a generic principally polarised abelian variety, the theta divisor $\Theta^n \subset A^{n+1}$ given by the equation $\theta(z,\tau)=0$ is a smooth irreducible algebraic variety of general type.
The talk is focused on the result of V. Buchstaber and A. Veselov, obtained in 2020–2024, which is based on the construction of the Chern–Dold character in the theory of complex cobordisms (Buchstaber, 1970):
The exponential generating series of the complex cobordism classes of the theta divisors $[\Theta^n],\, n = 0,1,2,\ldots,$ realizes the exponential of the universal formal group law.
We will discuss applications of this result to well-known problems in algebraic topology and algebraic geometry, including properties of the denominators of the Todd polynomials calculated by Hirzebruch in 1956 and the hitherto open Milnor problem (1958) on Chern numbers of irreducible smooth algebraic varieties.

Supplementary materials: Áóõøòàáåð.pdf (619.7 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024