Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
December 3, 2024 16:00, Moscow, Steklov Mathematical Institute, Room 313 (8 Gubkina) + online
 


Transitional phenomena in critical branching processes in a random environment: critical and subcritical cases

V. V. Kharlamov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Video records:
MP4 248.8 Mb
MP4 378.7 Mb

Number of views:
This page:75
Video files:4



Abstract: Let $\{Z_n, n \in \mathbb{N}_0\}$ be a critical branching process in a random environment $\Xi$. We consider the perturbation of this process, given by triangular array scheme of branching processes $\{Z_{k,n}, k \leq n\}$ with the same random environment $\Xi$. Denote by $b_{k,n}$, $k\leq n$, the difference of the associated random walks of $Z_{k,n}$ and $Z_k$.
We show that if $b_{k,n} = o(\sqrt{k})$ as $k \to \infty$, then
\begin{equation} \label{eq1} \mathsf{P}\left(Z_{n,n} > 0\right) \sim \mathsf{P}\left(Z_n > 0\right), \; n \to \infty. \end{equation}

However, if $b_{k,n} = - g(k / n) \sqrt{n}$ for some non-negative function $g(x)$, $x \in [0, 1]$, and for all $k \leq n$, then
\begin{equation} \label{eq2} \mathsf{P}\left(Z_{n,n} > 0\right) \sim \gamma \mathsf{P}\left(Z_n > 0\right), \; n \to \infty, \end{equation}
where the constant $\gamma \in (0, 1)$ depends on $g(x)$, $x \in [0, 1]$.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024