Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




V. I. Smirnov Seminar on Mathematical Physics
September 16, 2024 16:30, St. Petersburg, zoom online-conference
 


Hankel operators with band spectra

A. V. Sobolev

Department of Mathematics, University College London

Number of views:
This page:113
Youtube:



Abstract: We consider the class of bounded self-adjoint Hankel operators $\mathbf H$, realised as integral operators on the positive semi-axis, that commute with dilations by a fixed factor. By analogy with the spectral theory of periodic Schrödinger operators, we develop a Floquet-Bloch decomposition for this class of Hankel operators $\mathbf H$, which represents $\mathbf H$ as a direct integral of certain compact fiber operators. As a consequence, $\mathbf H$ has a band spectrum. We establish main properties of the corresponding band functions, i.e. the eigenvalues of the fiber operators in the Floquet-Bloch decomposition. A striking feature of this model is that one may have flat bands that co-exist with non-flat bands; we consider some simple explicit examples of this nature. Furthermore, we prove that the analytic continuation of the secular determinant for the fiber operator is an elliptic function; this link to elliptic functions is our main tool.
This is a joint work with A. Pushnitski.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024