Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Japan–Russia winter school
January 16, 2012 17:00, Moscow, HSE Department of Mathematics, Vavilova 7, room 311–312
 


Algebraic lagrangian geometry: from geometric quantization to mirror symmetry

N. A. Tyurin

Abstract: Geometric formulation of Quantum Mechanics is a translation to the language of projective spaces: the Hilbert space is replaced by its projectivization which is real quantum phase space; selfadjoint operators are replaced by certain smooth functions whose Hamiltonian vector fields preserve the Kahler structure; the Schrodinger equation in this setup turns to be just the Hamilton equation and the probabilistic aspects of QM are governed by the Riemannian mmetric. Therefore one can extend standard QM to certain approapriate algebraic varieties not only projective spaces.
Concerning the quantization problem one can thus reformulate it, and we call this reformulation “algebro geometric quantization”. As a solution of the algebro geometric quantization problem we can take ALAG – programme, proposed by A. Tyurin and A. Gorodentsev in 1999. It is a programme indeed – starting with a simply connected compact symplectic manifolod with integer symplectic form one gets an infinite dimensional algebraic manifold which is called the moduli space of half weighted Bohr–Sommerfeld cycles of fixed topological type and volume. On the other hand, this moduli space could be exploited in mirror symmetry, f.e. based on the Floer cohomology one can construct a family of vector bundles on the moduli spaces.

* (Format: 2 hours + break for tea + 2 hours.)
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024