Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Mathematical and Theoretical Physics, dedicated to Ludwig Faddeev
May 28, 2024 17:30–18:30, St. Petersburg, St. Petersburg Department of Steklov Mathematical Institute of the Russian Academy of Sciences
 


Homogenization of the periodic Schödinger-type equations

T. A. Suslina

Saint Petersburg State University
Supplementary materials:
Adobe PDF 463.5 Kb

Number of views:
This page:82
Materials:10
Youtube:



Abstract: In $L_2(\mathbb{R}^d;\mathbb{C}^n)$, we consider a selfadjoint strongly elliptic second-order differential operator ${\mathcal A}_\varepsilon$. It is assumed that the coefficients of ${\mathcal A}_\varepsilon$ are periodic and depend on ${\mathbf x}/\varepsilon$, where $\varepsilon>0$ is a small parameter. We study the behavior of the operator exponential $e^{-i{\mathcal A}_\varepsilon\tau}$ for small $\varepsilon$ and $\tau \in \mathbb{R}$. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau{\mathbf u}_\varepsilon({\mathbf x},\tau)=({\mathcal A}_\varepsilon{\mathbf u}_\varepsilon)({\mathbf x},\tau)$ with the initial data from a special class.

Supplementary materials: Tatiana_Suslina__Homogenization_of_the_Periodic_Schroedinger-type_Equations.pdf (463.5 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024