Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Beijing–Moscow Mathematics Colloquium
March 15, 2024 12:00–13:00, Moscow, online
 


Element orders and the structure of a finite group

M. A. Grechkoseeva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Number of views:
This page:113

Abstract: To every finite group $G$, we can assign the set $\omega(G)$ consisting of all positive integers arising as element orders of $G$ (so, for example, $\omega(A_5)=\{1,2,3,5\}$). It is a natural question to ask what we can say about the structure of $G$ given some properties of $\omega(G)$. Within this framework, I will discuss a more narrow question of to what extent $\omega(G)$ determines $G$ provided that $G$ is a finite nonabelian simple group.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024