Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Online Workshop "Frontiers of Holographic Duality-5"
December 7, 2023 16:30–16:55, Moscow, Steklov Mathematical Institute, online
 


Classical Liouville Action and Uniformization of Orbifold Riemann Surfaces

B. Taghavi

Institute for Research in Fundamental Sciences
Video records:
MP4 330.0 Mb
MP4 208.8 Mb

Number of views:
This page:175
Video files:59



Abstract: In this talk, based on 2310.17536, we will study the classical Liouville field theory on Riemann surfaces of genus $g > 1$ in the presence of vertex operators associated with branch points of orders $m_i > 1$. In particular, classical correlation functions of branch point vertex operators on a closed Riemann surface are related to the on-shell value of Liouville action functional on the same Riemann surface but with the insertion of conical points (of angles $2\pi/m_i$) at the location of these operators. With this motivation, and using the results of arXiv:1508.02102 and arXiv:1701.00771, we will study the appropriate classical Liouville action on a Riemann orbisurface using the Schottky global coordinates. We will also study the first and second variations of this action on the Schottky deformation space of Riemann orbisurfaces and show that the classical Liouville action is a Kähler potential for a special combination of Weil-Petersson and Takhtajan-Zograf metrics which appear in the local index theorem for Riemann orbisurfaces (see arXiv:1701.00771).

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024