Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin
November 21, 2023 15:00–15:50, Steklov Institute, conference hall, 9th floor
 


Polynomial approximation on algebraic variety

A. S. Sadullaev

Urgench State University named after Al-Khorezmi
Video records:
MP4 2,398.6 Mb

Number of views:
This page:220
Video files:98
Youtube Live:

A. S. Sadullaev
Photo Gallery



Abstract: The talk is devoted to the discussion of the following problem: let $A\subset \mathbb C^N$, $\operatorname{dim}A=n$, be an algebraic variety, $f(z)\in C(K)$ be some continuous function on a compact set $K\subset A$. If the approximation rate
$$ \varlimsup_{m\to\infty}\rho_m^{1/m}(f,K)=\delta<1. $$
where $\rho_m(f,K)=\min\{\|f-p_m\|_K, \operatorname{deg}p_m\leq{m}\}$ is the minimal deviation of $f$ from polynomials $p_m$ of degree $\leq{m}$, then what can we say about analyticity of $f$ in a neighborhood of the compact set $K$ ?

Website: https://zoom.us/j/98008001815?pwd=OG1rTVRFRzFpY3RhZmE4MXFwckxMUT09

* ID: 980 0800 1815; Password: 055016
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024