Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin
November 23, 2023 12:20–13:10, Steklov Institute, room 910
 


On Turán type inequalities related to metric estimates of simple partial fractions

M. A. Komarov

Vladimir State University
Video records:
MP4 3,353.4 Mb

Number of views:
This page:221
Video files:55
Youtube Live:

M. A. Komarov
Photo Gallery



Abstract: In 1939 P. Turán established the following inequality for the derivative $P_n'$ of algebraic polynomials $P_n$ of degree $n$, all of whose zeros lie in the closed unit interval $-1\le x\le 1$,
$$ \|P_n'\|_{C[-1,1]}>\frac{\sqrt{n}}{6}\,\|P_n\|_{C[-1,1]}, $$
converse to the classical A. A. Markov inequality (which is true for arbitrary polynomials). In the talk, we discuss a number of generalizations of Turán's inequality, in particular, the case when the zeros of a polynomial are taken on a set larger than the unit interval. The technique of constructing these generalizations uses the apparatus of metric estimates of simple partial fractions (that is, the logarithmic derivatives $\rho_n(x)=P_n'(x)/P_n(x)=\sum_{k=1}^n (x-z_k)^{-1}$ of polynomials $P_n$). By metric estimates of simple partial fractions, we mean estimates of the measure of sets of the form
$$ \{x\in E: \|\rho_n(x)|\ge \delta\}, \qquad \delta>0 $$
(probably, with some non-negative weight function near the simple partial fraction $\rho_n$), under certain restrictions on the poles $z_k$ of the fraction; here $E$ is a fixed subset of a real line (usually, $E=[-1,1]$ or $E=\mathbb{R}$).

Website: https://zoom.us/j/98008001815?pwd=OG1rTVRFRzFpY3RhZmE4MXFwckxMUT09

* ID: 980 0800 1815; Password: 055016
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024