|
|
2024-ary quasigroups and related topics
June 23, 2023, Novosibirsk, Sobolev Institute of Mathematics, room 115
|
|
|
|
|
|
On the classification of perfect colorings of small degree in the hypercube
D. S. Krotov |
Number of views: |
This page: | 138 |
|
Abstract:
The results of classification of perfect colorings (equitable partitions) of the hypercube (binary Hamming graph) H(n,2) with all eigenvalues not less than n-6 are described. Up to equivalence, there are 103 such colorings in H(10,2), not including the monochromatic one. The maximum number of colors is 8. (Joint work with A. Valyuzhenich)
Language: Russian or English if preferred by participants
References
-
J. Chiarelli, P. Hatami, M. Saks.
An asymptotically tight bound on the number of relevant variables in
a bounded degree Boolean function.
Combinatorica,
40(2):237–244, 2020.
https://doi.org/10.1007/s00493-019-4136-7
-
D. P. Kirienko.
On the number of correlation-immune and resilient functions of order
$n-4$.
In Proceedings of the VIII International Seminar “Discrete
Mathematics and Its Applications” (2–6 Feb. 2004), pages 421–424,
Москва, июнь 2004. MSU.
-
D. Krotov.
Perfect and related codes. IEEE DataPort, 2022–2023.
https://doi.org/10.21227/w856-4b70
-
I. Yu. Mogilnykh, A. A. Valyuzhenich.
Equitable $2$-partitions of the Hamming graphs with the second
eigenvalue.
Discrete
Math., 343(11):112039(1–9), Nov. 2020.
https://doi.org/10.1016/j.disc.2020.112039
-
N. Nisan, Szegedy M.
On the degree of Boolean functions as real polynomials.
Comput. Complexity, 4(4):301–313, Dec. 1994.
https://doi.org/10.1007/BF01263419
-
S. Rasoolzadeh.
Classification of all $t$-resilient boolean functions with $t+4$
variables.
Cryptology ePrint Archive 2023/638, 2023.
https://eprint.iacr.org/2023/638
-
Yu. Tarannikov, D. Kirienko.
Spectral analysis of high order correlation immune functions.
Cryptology ePrint Archive 2000/050, 2000.
https://eprint.iacr.org/2000/050
|
|