Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Beijing–Moscow Mathematics Colloquium
June 16, 2023 12:00–13:00, Moscow, online
 


Self-interlocking structures in $R^2$ and $R^3$

A. Ya. Belovabc

a Bar-Ilan University, Ramat Gan
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c Lomonosov Moscow State University

Number of views:
This page:203

Abstract: Consider a set of contacting convex figures in $R^2$. It can be proven that one of these figures can be moved out of the set by translation without disturbing others. Therefore, any set of planar figures can be disassembled by moving all figures one by one. However, attempts to generalize it to $R^3$ have been unsuccessful and quite unexpectedly interlocking structures of convex bodies were found. Author proposed the following mechanical use of this effect. In a small grain there is no room for cracks, and crack propagation should be arrested on the boundary of the grain. On the other hand, grains keep each other. So it is possible to get "materials without crack propagation" and get new use of sparse materials, say ceramics. Quite unexpectedly, such structures can be assembled with any type of platonic polyhedra, and they have a geometric beauty. Some patents were obtained

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024