Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Algebras in Analysis
April 14, 2023 17:30–19:00, Moscow, online via Zoom
 


Stable phase retrieval in arbitrary Banach lattices

T. Oikhberg

Number of views:
This page:79
Youtube:



Abstract: A subspace $E$ of a Banach lattice $X$ is said to do phase retrieval if, for any $f, g \in E$, the equality $|f|=|g|$ automatically implies that $f$ and $g$ are scalar multiples of each other (that is, we can recover an element of $E$ from its modulus, up to a unimodular scalar multiple). Further, $E$ does stable phase retrieval (SPR) if there exists a constant $C>0$ so that, for $f$ and $g$ as above, we have $\inf_{|\lambda|=1} \|f - \lambda g\| \leq C \| |f| - |g| \|$ (the recovery described above is "stable’’).
In the talk we establish two results which allow us to describe SPR subspaces of Banach lattices.
(1) In a real Banach lattice $X$, $E$ does SPR if and only it contains no "almost disjoint’’ pairs of elements.
(2) The SPR condition only needs to be verified on "well separated’’ elements of the unit ball.
These results permit us to give examples of SPR subspaces, and also to describe possible SPR subspaces of classical Banach lattices, such as $L_p$ or $C(K)$.
(Joint work with D.Freeman, B.Pineau, and M.Taylor)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024