Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Geometric structures on complex manifolds
October 5, 2011 12:40, Moscow
 


Locally conformally Kaehler structures on homogeneous spaces

Keizo Hasegawa

Niigata University
Video records:
Flash Video 1,573.3 Mb
Flash Video 258.8 Mb
MP4 985.1 Mb

Number of views:
This page:554
Video files:111

Keizo Hasegawa



Abstract: A homogeneous Hermitian manifold $M$ with its homogeneous Hermitian structure $h$, defining a locally conformally Kaehler structure $w$ is called a homogeneous locally conformally Kaehler or shortly a homogeneous l.c.K. manifold. If a simply connected homogeneous l.c.K. manifold $M=G/H$, where $G$ is a connected Lie group and $H$ a closed subgroup of $G$, admits a free action of a discrete subgroup $D$ of $G$ from the left, then a double coset space $D\setminus G/H$ is called a locally homogeneous l.c.K. manifold. We discuss explicitly homogeneous and locally homogeneous l.c.K. structures on Hopf surfaces and Inoue surfaces, and their deformations. We also classify all complex surfaces admitting locally homogeneous l.c.K. structures.
We show as a main result a structure theorem of compact homogeneous l.c.K. manifolds, asserting that it has a structure of a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus. As an application of the theorem, we see that only compact homogeneous l.c.K. manifolds of complex dimension 2 are Hopf surfaces of homogeneous type. We also see that there exist no compact complex homogeneous l.c.K. manifolds; in particular neither complex Lie groups nor complex paralellizable manifolds admit their compatible l.c.K. structures.
We show as a main result a structure theorem of compact homogeneous l.c.K. manifolds, asserting that it has a structure of a holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus. As an application of the theorem, we see that only compact homogeneous l.c.K. manifolds of complex dimension 2 are Hopf surfaces of homogeneous type. We also see that there exist no compact complex homogeneous l.c.K. manifolds; in particular neither complex Lie groups nor complex paralellizable manifolds admit their compatible l.c.K. structures.
This talk is based on a joint work with Y. Kamishima “Locally conformally Kaehler structures on homogeneous spaces” (arXiv:1101.3693).

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024