Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Geometric structures on complex manifolds
October 4, 2011 17:10, Moscow
 


Stability of extremal metrics under complex deformations

Yann Rollin

Nantes University
Video records:
Flash Video 1,844.5 Mb
Flash Video 303.1 Mb
MP4 1,151.6 Mb

Number of views:
This page:425
Video files:167

Yann Rollin



Abstract: Let $(X,\Omega)$ be a closed polarized complex manifold, $g$ be an extremal metric on $X$ that represents the Kähler class $\Omega$, and $G$ be a compact connected subgroup of the isometry group $\mathrm{Isom}(X,g)$. Assume that the Futaki invariant relative to $G$ is nondegenerate at $g$. Consider a smooth family $(M\to B)$ of polarized complex deformations of $(X,\Omega)\simeq (M_0,\Theta_0)$ provided with a holomorphic action of $G$. Then for every $t\in B$ sufficiently small, there exists an $h^{1,1}(X)$-dimensional family of extremal Kähler metrics on $M_t$ whose Kähler classes are arbitrarily close to $\Theta_t$.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024