Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Geometric structures on complex manifolds
October 4, 2011 10:20, Moscow
 


Some curiosities on $\mathrm{Spin}(9)$ and the sphere $S^{15}$

Paolo Piccinni

Sapienza Universita' di Roma
Video records:
Flash Video 257.9 Mb
Flash Video 1,569.5 Mb
MP4 978.7 Mb

Number of views:
This page:1006
Video files:567

Paolo Piccinni



Abstract: Although holonomy $\mathrm{Spin}(9)$ is only possible for the two $16$-dimensional symmetric spaces $\mathbb OP^2$ and $\mathbb OH^2$, weakened holonomy $\mathrm{Spin}(9)$ conditions have been proposed and studied, in particular by Th. Friedrich. A basic problem is to have a simple algebraic formula for the canonical $8$-form $\Phi_{\mathrm{Spin}(9)}$, similar to the usual definition of the quaternionic $4$-form $\Phi_{\mathrm{Sp}(n)\cdot\mathrm{Sp}(1)}=\omega_I^2+\omega_J^2+\omega_K^2$, witten in terms of local compatible almost hypercomplex structures $(I,J,K)$.
In the talk, a simple formula for $\Phi_{\mathrm{Spin}(9)}$ is presented, discussing a family of local almost hypercomplex structures associated with a $\mathrm{Spin}(9)$-manifold $M^{16}$. Some of these complex structures, now on model spaces $\mathbb R^{16^q}$, are then used to give an approach through $\mathrm{Spin}(9)$ to the very classical problem of writing down a maximal system of tangent vector fields on spheres $S^{N-1}\subset\mathbb R^N$. If time permits, some properties of manifolds equipped with a locally conformal parallel $\mathrm{Spin}(9)$ metric will be also discussed.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024