Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Beijing–Moscow Mathematics Colloquium
November 11, 2022 12:00–13:00, Moscow, online
 


Regularity of solutions to stationary Fokker-Planck-Kolmogorov equations

V. I. Bogachev

Lomonosov Moscow State University

Number of views:
This page:183

Abstract: We discuss regularity of solutions to double divergence form equations of the form
$$ \partial_{x_i}\partial_{x_j}(a^{ij}\mu) - \partial_{x_i}(b^i\mu)=0 $$
with respect to measures on $\mathbb{R}^d$, where $(a^{ij})$ is the diffusion matrix and $b=(b^i)$ is the drift coefficient. The equation is understood in the sense of distributions, so the coefficients can be rather irregular. The key problems concern the existence of solution densities and their regularity properties, and also the existence and uniqueness of probability solutions. In particular, we discuss some recent results obtained jointly with Röckner and Shaposhnikov on Zvonkin's transform of the drift coefficient, which enables one to improve the drift.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024