Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference "New Trends in Mathematical Physics"
November 12, 2022 11:00–11:30
 


Commutators in C*-algebras and traces

A. M. Bikchentaev

Kazan (Volga Region) Federal University
Video records:
MP4 61.8 Mb
Supplementary materials:
Adobe PDF 462.0 Kb

Number of views:
This page:117
Video files:11
Materials:19



Abstract: Dimension functions and traces on $C^\ast$-algebras are fundamental tools in the operator theory and its applications. A $C^*$-algebra is a complex Banach $\ast$-algebra $\mathcal{A}$ such that $\|A^*A\|=\|A\|^2$ for all $A \in \mathcal{A}$. For a $C^*$-algebra $\mathcal{A}$ by $\mathcal{A}^{\mathrm{id}}$ and $\mathcal{A}^+$ we denote its subsets of idempotents ($A=A^2$) and positive elements, respectively. If $A\in {\mathcal{A}}$, then $|A|=\sqrt{A^*A} \in \mathcal{A}^+$. An element $X\in \mathcal{A}$ is a commutator, if $X=[A, B]=AB-BA$ for some $A, B\in \mathcal{A}$. A mapping $\varphi : {\mathcal{A}}^+ \to [0,+\infty]$ is called a trace on a $C^*$-algebra $\mathcal{A}$, if $\varphi (X+Y)=\varphi(X)+\varphi(Y), \; \; \; \varphi (\lambda X)=\lambda \varphi (X)$ for all $ X,Y \in {\mathcal{A}}^+, \; \lambda \ge 0$ (moreover, $ 0\cdot(+\infty)\equiv 0$); $\varphi (Z^*Z)=\varphi (ZZ^*)$ for all $Z \in \mathcal{A}$. The following results were obtained. Let $\varphi$ be a faithful trace on a $C^*$-algebra $\mathcal{A}$; let $A,B \in \mathcal{A}^{\mathrm{id}}\setminus\{0\}$ be such that $ABA=\lambda A$ and $BAB=\lambda B$ for some $\lambda \in \mathbb{C}\setminus\{0, 1\}$. Then $[A, B]^n\not=0$ for all $n\in \mathbb{N}$. Corollary: Let $\varphi$ be a faithful tracial state on a $C^*$-algebra $\mathcal{A}$, let $A,B \in \mathcal{A}^{\mathrm{id}}\setminus\{0\}$ be such that $ABA=\lambda A$ and $BAB=\lambda B$ for some $\lambda \in \mathbb{C}\setminus\{0, 1\}$. Then the element $[A, B]^{2n}$ is a non-commutator for all $n\in \mathbb{N}$. Let $\mathcal{H}$ be a separable Hilbert space, $\dim \mathcal{H}= +\infty$. Let $X=U|X|$ be the polar decomposition of an operator $X\in \mathcal{B}(\mathcal{H})$. Then $X$ is a non-commutator if and only if both $U$ and $|X|$ are non-commutators. A Hermitian operator $X\in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the Cayley transform $\mathcal{K}(X)$ is a commutator. Let $\mathcal{H}$ be a separable Hilbert space and $\dim \mathcal{H}\leq +\infty$, $A,B, P\in \mathcal{B}(\mathcal{H})$ and $P=P^2$. If $AB=\lambda BA$ for some $\lambda \in \mathbb{C}\setminus\{1\}$ then the operator $AB$ is a commutator. An operator $AP$ is a commutator if and only if $PA$ is a commutator.

Supplementary materials: Bikchentaev.pdf (462.0 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024