Abstract:
If $x<0$ then there exists the shortest developments of $x$ and $1/x$ into finite negative-regular continued fractions:
\begin{equation*}
x=\frac{-1}{a_1}\,\underset{+}{}\frac{-1}{a_2}\,\underset{+\cdots+}{}\frac{-1}{a_k}\,,\quad
\frac{1}{x}=\frac{-1}{c_1}\,\underset{+}{}\frac{-1}{c_2}\,\underset{+\cdots+}{}\frac{-1}{c_m}\,.
\end{equation*}
These expansions are obtained by a generalized Euclidean algorithm. Then
\begin{equation}\label{minperiod2011}
x\oplus s(x^{-1})\overset{def}{=}\{a_1,a_2,\ldots,a_{k-1},a_k+c_m,c_{m-1},\ldots,c_1\}\mapsto x
\end{equation}
is the minimal period for $x$.
We call this $b_k=a_k+c_m$ as the marked element of the minimal period $\{b_1,\ldots,b_n\}$.
Theorem.Let$P=\{b_1,\ldots, b_n\}$be the minimal period of a rational number$x\neq -1$with marked element$b_k$. Then the period$P^*$, in which$b_k$is replaced with$b_k-2$, corresponds to a Möbius transform of order$2$. Any Möbius transform of order$2$in the modular group is obtained this way.
Example 1:
\begin{equation*}
\begin{aligned}
&\{1,3,2,\overset{\blacktriangledown}{6},2\}\mapsto -\frac{7}{4}\\
&\{1,3,2,\overset{\blacktriangledown}{4},2\}\rightarrow-\frac{17\pm i}{10}\\
&\begin{matrix}
&1&3&2&4&2&\\
\frac{1}{0}&\frac{0}{1}&\frac{-1}{1}&\frac{-3}{2}&\frac{-5}{3}&\frac{-17}{10}&\frac{-\mathbf{29}}{\mathbf{17}}
\end{matrix}
\end{aligned}\quad
\begin{aligned}
\frac{7}{4}&=1+\frac{1}{1}\,\underset{+}{}\,\frac{1}{2+1}\,;\\
\frac{\mathbf{29}}{\mathbf{17}}&=1+\frac{1}{1}\,\underset{+}{}\,\frac{1}{2}\,\underset{+}{}\,\frac{1}{2}\,\underset{+}{}\,\frac{1}{1}\,\underset{+}{}\,\frac{1}{1}\,.
\end{aligned}
\end{equation*} Example 2:
\begin{equation*}
\begin{aligned}
&\{1,1,\overset{\blacktriangledown}{4},1,1\}\mapsto 1\\
&\{1,1,\overset{\blacktriangledown}{2},1,1\}\rightarrow \pm i\\
&\begin{matrix}
&1&1&2&1&1&\\
\frac{1}{0}&\frac{0}{1}&\frac{-1}{1}&\frac{-1}{0}&\frac{-1}{-1}&\frac{0}{-1}&\frac{\mathbf{1}}{\mathbf{0}}
\end{matrix}
\end{aligned}\quad
\begin{aligned}
1&=0+\frac{1}{0+1}\,;\\
\frac{\mathbf{1}}{\mathbf{0}}&=0+\frac{1}{0}\,\underset{+}{}\,\frac{1}{0}\,\underset{+}{}\,\frac{1}{0}\,.
\end{aligned}
\end{equation*}
P. L. Chebyshev, “Sur l'interpolation dans le cas d'un grand nombre de données fournies par les observations”, Mémoires de l'Académie des sciences de St.-Petersburg, 1:5 (1859), 1–81
L. Euler. Introductio in analysin infinitorum, volI, Marcum-Michaelem Bousquet et socios, Lausannae 1748; Introduction to Analysis of the Infinite, Book I, Springer 1988(English translation).
W. B. Jones, W. J. Thron, Continued Fractions. Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications \number 11, Addison-Wesley, Reading, 1980
S. V. Khrushchev, Continued Fractions and Orthogonal Polynomials: From Euler's point of view, Encyclopedia of Mathematics and its Applications \number 122, Cambridge University Press, 2008
A. G. Kurosh, Theory of Groups, vol \bf{ 2}, AMS Chelsea, 1956
O. Perron, Die Lehre von den Kettenbrüchen, vol \bf{ I}, Teubner, 1953
O. Perron, Die Lehre von den Kettenbrüchen, II, Teubner, 1957
A. Pringsheim, Vorlesungen über Zahlen und Funktionlehre, Teubner, Leipzig, 1916
C. Smith, A Treatise on Algebra, MacMillan and Co., London,, 1882
H. Tietze, “Uber Kriterien für Konvergenz und Irrationalität unendlicher Ketenbrüche”, Math. Ann., 70 (1911), 236–265