Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Sixth International Conference on Differential and Functional Differential Equations DFDE-2011
August 19, 2011 10:55, Moscow
 


Ginzburg–Landau energy with prescribed degrees

P. Mironescu

Université Claude Bernard Lyon 1, Lyon, France
Video records:
Flash Video 1,820.3 Mb
Flash Video 299.2 Mb
MP4 1,137.8 Mb

Number of views:
This page:271
Video files:151

P. Mironescu



Abstract: We consider the simplified Ginzburg–Landau energy $\frac12\int_\Omega|\nabla u|^2+\frac1{(4\varepsilon)^2}\int_\Omega(1-|u|^2)^2$. Here, $\Omega$ is a domain in $\mathbb R^2$ and $u$ is complex-valued. On $\partial\Omega$, we prescribe $|u|=1$ and the winding numbers of $u$. This is one of the simplest models of critical equation leading to non-scalar bubbles. I will discuss existence/nonexistence results for minimizers/critical points. The talk is based on results of Berlyand, Dos Santos, Farina, Golovaty, Rybalko, and the lecturer.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024